## Join the Dots

In this investigation, you will investigate the number of lines that can be used to join a different number of dots.

- Here is one dot. No lines can join a single dot.
- Here are 2 dots that can be joined by 1 line.

Draw 3 dots. How many lines can be used to join the 3 dots?

Continue with 4,5 and 6 dots.

## Join the Dots

Draw a table and record your results. Use the example to help you.

| Number of dots | Number of lines |
| :---: | :---: |
| 1 | 0 |
| 2 | 1 |

Can you spot any patterns?

Can you predict the number of lines used with $7,8,9$ and 10 dots?

Test your answers.

## Teacher Guidance

You may wish to model how to lay out the three dots and connect all of them so that the children find the correct number of lines.
-
1


7


3


4


5


6


10

| Number of dots | Number of lines |
| :---: | :---: |
| 1 | 0 |
| 2 | 1 |
| 3 | 3 |
| 4 | 6 |
| 5 | 10 |
| 6 | 15 |
| 7 | 21 |
| 8 | 28 |
| 9 | 36 |
| 10 | 45 |

The pattern of the number of lines are the triangular numbers.
It works because with 2 dots, you join the first dot to the other. (1)
With 3 dots, you join the first dot to 2 dots and the second to one dot. ( $2+1$ )
With 4 dots, first dot to 3 dots, 2 nd dot to 2 dots, 3 rd dot to 1 dot. $(3+2+1)$

